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Disilenes, previously thought to be not stable, have now been
known for some 20 years. Since the landmark synthesis by Fink
and West,1 numerous stable examples have been studied. Nonethe-
less, only a few examples of disilene transition-metal complexes2-4

are known thus far. Interestingly, only examples of complexes with
groups 103 and 64 have been reported. Disilene complexes of groups
4 or 5, however, have not been known until now.

In recent years, we have investigated the synthesis of oligosilyl
potassium compounds by the reaction of oligosilanes with potassium
alkoxides.5 These studies provided simple access to dimetalated
oligosilanes.6 Some of the obtained silyl anions were reacted with
zirconocene and hafnocene dichlorides to give bis-silylated group
4 metallocenes.7 Most recently, we were able to extend our studies
to the synthesis of 1,2-disilanyl dianions.8 1,2-Dipotassiumtetrakis-
(trimethylsilyl)disilane (1) proved to be a highly reactive compound
that was difficult to derivatize. However, by addition of magnesium
bromide the reactivity could be moderated.9 Further addition of
hafnocene dichloride effected the formation of the first example
of a group 4 disilene complex (2) (Scheme 1).10

In a series of recent publications, Kira et al.3 used a conceptually
similar approach for the syntheses of disilene complexes of
platinum3a and palladium3b,c by reaction of a 1,2-dilithiotetrasilyl-
disilane11 with the respective metal chlorides. In an elegant
comparison, they could show that switching the electron count at
palladium by removal or addition of a phosphane ligand changes
the character of the compound from a metallacycle (A) to a
π-complex (B).

This change was reflected by the differences in the geometry of
the disilene moiety, which displays sp3 hybridization for the
coordinated silicon atoms in the metallacycle (A) case and sp2

hybridized silicon atoms in theπ-complex (B). 29Si NMR spec-
troscopy proved to be another good indicator for the degree of sp2

hybridization. While the resonances of the coordinated silicon atoms
of the metallacycles are in the typical range14 for isotetrasilanylmetal
compounds of around-503b ppm, theπ-complexation mode causes
a downfield shift of some 110 ppm to+65.33c ppm (Table 1).

The 29Si NMR shift value for the coordinated atoms of2 is
+132.8 ppm. This is close to typical shifts for tetrasilyl substituted

disilenes,12 which range from+140 to+155 ppm. Chemical shifts
for the coordinated silicon atom of the isotetrasilanyl unit of mono-
or disilylated7,13 hafno- and zirconocenes14 lie in the range of-50
to -100 ppm. For known ethylene titanocene complexes,15 13C
NMR spectra show a similar upfield shift of some 20 ppm for the
coordinated ethylene resonances compared to free ethylene.

A DFT calculation study of the zirconocene analogue of216,17

provided further insight into the bonding situation of2. A calculated
NMR shift value of +127 ppm was obtained, which compares
nicely to the observed data. The geometry of the calculated structure,
however, does not exhibit the expected shortened central Si-Si
bond but rather an unusually long distance of 2.56 Å. Also, a back
bending of the trimethylsilyl groups can be observed. Together with
the unusually low NMR shift, this geometry suggests a partial
disilylene18 character (C) of the ligand. The nature of bonding
between the disilene unit and the metal in2 therefore should be
assigned somewhere between theπ-complex and disilylene reso-
nance structures.

Reaction of2 with hydrogen resulted in the almost quantitative
formation of tetrakis(trimethylsilyl)disilane,19 which most likely
proceeds via aσ-bond metathesis mechanism.20 The formation of
1,1,1,3,3,3-hexamethyltrisilane, which might be a product derived
from a silylene ligand, was not detected.

Unfortunately, it was not possible to isolate2 in the solid state.
Evaporation of the solvent resulted in decomposition. NMR
monitoring of the formation of2 showed it to be a stepwise process
with a monosilylated intermediate. Using ferrocene as an internal
standard, the yield of2 could be estimated to be around 60%.

Reaction of2 with trimethylphosphane proceeded smoothly to
give the phosphane adduct3,21 which could be subjected to single-
crystal X-ray diffraction analysis (Figure 1). The obtained structure
consists of a hafnocene with the two Cp groups bent by 129.4°.22

The plane Si(2)-Hf-Si(3) is almost orthogonal to the Cp-Hf-
Cp plane (87.1°). Also, the phosphorus atom is close to the
equatorial plane. The bond between the two coordinating silicon
atoms (2.343(4) Å) is longer than those found for the structurally
similar platinum3a (2.321(2) Å) and palladium3b (2.303(1) and
2.3180(8) Å) complexes. The Si-Si-Si angles around the coor-
dinating silicon atoms add up to 329.1° for Si(2) and 338.6° for
Si(3). The Si-Hf bond lengths of 2.8309(6) and 2.8332(5) Å
compare well to related compounds withσ-bonded silyl ligands
connected to the Cp2Hf fragment (Cp2Hf[Si(SiMe3)3]2: 2.850 Å,7

(Cp2Hf[Si(SiMe3)2SiMe2]2: 2.826 and 2.791 Å6a).
These structural features clearly indicate a high degree of sp3

character for the coordinating silicon atoms. Further evidence for
the metallacycle character of3 was provided by29Si NMR
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spectroscopy. At ambient temperature it was only possible to detect
a signal for the trimethylsilyl groups. The resonances belonging to
the coordinated silicon atoms could not be obtained, most likely
because of a fast coordination/decoordination process of trimeth-
ylphosphane. At-80 °C, however, two sets of resonances were
observed for the trimethylsilyl groups (-0.7 and-1.3 ppm) and
central silicon atoms (-135.7 and-159.7). All four resonances
displayed couplings to phosphorus.

Again this spectral behavior was in accordance with a calculation
for the zirconium analogue of3, which predicted slightly less
pronounced upfield shifts to-86.8 and-123.7 ppm (Table 1).
Structurally and spectroscopically (1H- and13C NMR) characterized
examples of trimethylphosphane adducts of an ethylene titanocene
complex23 and isobutene complexes of hafnocene and zirconocene24

provide evidence that also in these cases a metallacyclopropane
description can be considered most appropriate.

Further studies concerning the insertion chemistry of2 and
related compounds are currently under way.
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Figure 1. Molecular structure of3 (thermal ellipsoid plot drawn at the
30% probability level). Hydrogen atoms omitted for clarity.

Table 1. 29Si NMR Data of Disilenes and Disilene Complexes

compound 29Si NMR shift

(tBuMe2Si)2SidSi(SiMe2
tBu)2 142.112

(Me3Si)2SidSi(SiMe3)2 calcd. 155.116

Cp2Hf(Me3Si)2SidSi(SiMe3)2 (2) 132.8
Cp2Zr(Me3Si)2SidSi(SiMe3)2 calcd. 127.216

Cy3PPd(tBuMe2Si)2Si)Si(SiMe2
tBu)2 (B) 65.33c

(Me3P)2Pd(tBuMe2Si)2SidSi(SiMe2
tBu)2 (A) -46.83b

Cp2Hf(Me3Si)2SidSi(SiMe3)2‚PMe3 (3) -135.7/-159.7
Cp2Zr(Me3Si)2SidSi(SiMe3)2‚PMe3 calcd. -86.8/-123.716
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